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In this lecture, we focus on the vector space L2T0(]R, C) of periodic signals with period Ty of finite average power, equipped

1 [T
with the Hermitian product (x, y)1, = — x(t)y*(t)dt. With the linear review of the previous lecture, we can now dive
0 TO 0

into the structure of this vector space.

Proposition 0.1
For any n € N, the set of complex exponentials e_ ., ..., €n, is an orthonormal set of L%-O(R, C), thus an orthonormal
basis of the subspace Span(e_nwy, .-, €nw,) 0f L7, (R, C).

PROOF : Let two integers j and k of [—n, n] such that j # k. Then

1 [To 1 [T " 1 [ efi—kwot 770
(€uo s ko) To = ?0/0 Ejuso (1) Eka () dt = A ; glwot gmikwot gp — A [i(j—k)woh =0
Forany j € [—n, n],
1 [T 1 [T
T ?O/O il (Dt = = [t =1
thus || €ju, | 7o = v/ {(€jws» €jwo) T, = 1, yielding the result. n

Definition 0.1 (Fourier coefficients, Fourier series, partial sum)
Let x be a signal of L2T0(]R, C). The Fourier coefficients of x are the complex numbers defined by:

1 [T ,
VneZ  cp(x) = (X, )Ty = — x(t)e”"otdt
To Jo
The Fourier series of x is the function
—+o00 400
t Z Ca(x)emot = Z (X, €ntwy ) To €nwo (1)
n=—0o0o n=—o0

The partial sum of index N of the Fourier series of x is its projection onto the subspace Span(e_ ;. --- » ENw, )» 1-€-

N N

Sn(x) = Z (X, €nwy) Tonwo = Z Cn(X) €y

n=—N n=—N

Remark: In particular,



is the average value of x over the interval [0, Tg]. This coefficient is called the DC component of x, as opposition with the
other coefficients called the AC (alternating current) component. A zero-mean signal x is such that ¢p(x) = 0.

Definition 0.2 (Trigonometric polynomial)
A trigonometric polynomial is any function of the form:

N N
P.R—-C tw Z cpemot = Z Cn (ei“’ot)"

n=—N n=—N

where N € N and (c,,),,e[[,,v,,\,]] is a sequence of complex numbers, i.e. a polynomial in the complex exponential e’“o.

Remark: According to this definition, the partial sum of a Fourier series is a trigonometric polynomial. Weierstrass’ theorem
states that any continuous function defined on a compact interval of R is the uniform limit of a sequence of polynomials.
This theorem can be adapted to the space L2TO(R, K) by stating that any continuous periodic function with period Ty is the
uniform limit of a sequence of trigonometric polynomials, which implies in this context that any continuous periodic signal is
equal to its Fourier series.

Definition 0.3 (Convergence in quadratic mean)
A sequence (x,)nen of signals in L7, (R, C) converges in quadratic mean to x € L7, (R, C) if
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Jim b = x5, = im [ pa(t) — x(0)Pde =0

Definition 0.4 (Pre-Hilbert space, Hilbert space, Hilbert basis)
» A pre-Hilbert space is a vector space equipped with a scalar product or a Hermitian product.

» A Hilbert space is a complete pre-Hilbert space, meaning that any Cauchy sequence has a limit in this space.
» A Hilbert basis of a Hilbert space V is a sequence (v,)qen Of vectors of V satisfying the following properties:

» forany n € N, ||v,|| = 1, and for any (n, m) € N? such that n # m, (v, vp,) = 0;

» the set Span ((v,)nen) is dense in V, i.e. any vector v € V is the limit of the sequence of vectors in
Span ((Vn)nEN)'

Example 0.1
Spaces L?(R,K) and L2TO(R, K) are infinite-dimensional Hilbert spaces. Their completeness is ensured by the Riesz-
Fischer theorem.

Remarks:

» The equivalence of norms in finite dimension ensures that any finite-dimensional vector space is complete, so that any
finite-dimensional pre-Hilbert space is a Hilbert space. In infinite dimension, some spaces may be pre-Hilbert without
being Hilbert. The Hilbert space structure enables an easy handling of scalar products in infinite dimension.

» Note the difference between a Hilbert basis and an algebraic orthonormal basis defined in the previous lecture.

Theorem 0.2
The set of complex exponentials (en,,, )nez is @ Hilbert basis of L2TO(R, Q).



PROOF : The proof is out of the scope of this document. ]

Theorem 0.3 (Parseval’s theorem)
Let a periodic signal x € L% (R, C) whose series of Fourier coefficients (c,(x))ncz is absolutely convergent, i.e.

Z |cn(x)| < 4o0. Then the corresponding Fourier series converges in quadratic mean to x, i.e.

n=—oo

i
lim i/o 1Sn(x)(£) — x()[2dt = 0

N—+oco To

Moreover, Parseval’s identity states:

—1 K d E 2
t t= cn X
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n=—oo

PROOF : Let x € L7, (R, C). Since (€, )nez is a Hilbert basis of L7 (R, C), we can write
+oo too
X = Z (X, €nwo) To€nwo = Z cn(X)enw, = Sn(x) + Z Cn(X) enwo

n=—00 n=—00 |n|>N

By triangular inequality, we get:

1Sw(x) = xll7s < D lea(x)]

[n|>N

From the absolute convergence of Fourier coefficients, we deduce that N lim ||Sn(x) = x|, =0.
—+oo

Parseval’s identity is simply the Pythagorean theorem for Hilbert spaces. Indeed,

To Foo ™=
—/ (t)Pdt = ||x|1%, =y Z Cn(x)Cm(X) (Ericns €muso) = D lcn(x)[? m

n=—00 Mm=—0o0 n=—o0

Proposition 0.4
Fourier series satisfy the following properties:

(i) linearity: for two periodic signals x and y with period Ty, if z = ax + By, then for any n € Z,
cn(2) = acn(x) + Bea(y)

(i) differentiation: for any n € Z, c,(x’) = inwocp(x);
(ili) pure delay: for any a € R, for any n € Z, c,(7.(x)) = e~ 03¢, (x)
(iv) symmetry: if X : t — x(—t), then for any n € Z, c,(X) = (ca(x*))".

(iv) circular convolution: for two periodic signals x and y with period Ty, for any n € Z, c,(x ® y) = ca(x)ca(y)-

PROOF : (i) By linearity of the Hermitian product in the first component,

cn(z) = co(ax + By) = (ax + By, enwy) = (X, €nuy) + B, €nwo) = aCp(x) + Ben(y)



(i) An integration by parts yields:

1 To ] 1 ) To : To .
en(x') = 7 ). X' (t)e”"otdt = T [x(t)e’"“’”t} + m;;O /0 x(t)e™ "™ dt = inwgcy(x)
0

(iii) By the change of variable t — t — a, we get:

1 1 —a+To

TO . . .
cn(ma(x)) = ?0/0 x(t — a)e”™otdt = T x(t)enwolt+a) gy — g=inwoac ()
—a

(iv) By the change of variable t — —t, we get:

1 To ) 1 0 . 1 To ) * "
a0 == [ x(—t)e"”w"tdt:?o/ x(t)e’"“"’tdt:R(/o x*(t)e—"’wofdt> — (e(x")

—To

(v) As seen in the lecture about periodic signals, circular convolution

VteR (x@y)(t) = %/0 Ox(u)y(t — u)du

is also a periodic signal with period Ty. Its Fourier coefficients are

1 To . 1 To pTo ) )
a(x®y)= ?0/0 (x @ y)(t)e” " dt = 72 /. /0 x(u)e™ MUy (t — u)e~Mo(t=u) dydt
0

Bu the change of variable (t, u) — (t + u, u) and by Fubini’'s theorem,

To ' To '
erlx@y) = (; / x(r)e'"wdr) (; / y(u)e'"wo"du> — clx)cnly)

Remark: Property (i) shows that for any differentiable signal x, cp(x’) = 0 therefore the derivative of a periodic signal is

a zero-mean periodic signal. Conversely, it implies that we can only integrate zero-mean periodic signals, otherwise the

antiderivative would have a term t — cp(x).t which cannot be written as a Fourier series since it is not periodic signal.

We turn to the particular case of real-valued periodic signals and express their Fourier series as sums of sines and cosines.

Lemma 0.5
If x € L% (R, R) is a real-valued signal, then for any n € Z, c_,(x) = c,(x)*. In particular, cp(x) € R.

PROOF : If x € L7 (R, R), then for any t € R, x*(t) = x(t), thus for any n € Z,

N 1 [T : ’
c_n(x) = ?0/0 x(t)e™otdt = (T()/o x(t)e""“’(’tdt> = cp(x)*

In particular, for n = 0, co(x) = co(x)*, thus co(x) € R.

Proposition 0.6
Any real-valued signal x € L%, (R, R) can be written:

+oo +oo
VieR  x(t) = Z ap(x) cos(nwot) + Z bn(x) sin(nwot)
n=0 n=1



To To 2 To
_ 1 / Xt VneN an(x) = = / x(t) cos(mwot)dt  b(x) = — / x(£) sin(nwot)dt
To Jo To Jo To Jo

PROOF : Using identity et = cos(nwgt) + i sin(nwot), we can write:
[¢] y

+o0 oo )
X(t) — Z Cn( ) inwot __ CO + ch einwot + Zc,n(x)e_'”wot
n=-—00 n=1
+oo
= co(x) + Z cn(x) (cos(nwot) + isin(nwot)) + Z cn(x)* (cos(nwot) — isin(nwot))
n=1

= q(x) + Z Cn(x) + ca(x)") cos(nwot) + > i (ca(x) — ca(x)*) sin(nwot)

We obtain the expected form by setting:

20(x) = co(x) = %/0 " x()dt

To 2 To
an(x) = cu(x) + cu(x)* = —/ x(t) (€7 Mot 4 gimot) g — / x(t) cos(nwot)dt
TO 0 TO

i 2

br(x) = i)~ 0)") = = [ x(0) (0 = e ot = 2 [ (o) sin(maat)ot .

Remark: The formulation of Fourier series as sums of sines and cosines can be useful for real-valued even or odd signals.

Proposition 0.7 (Parseval’s identity)
For any real-valued signal x € LQTO(R, R), Parseval’s identity becomes:

1 [To

= [ (e Pa = aofx zzan ()

PROOF : Using the expressions a,(x) and b,(x) as functions of c,(x), we have:

Vel () = 2By 20 4 ibi()

so that

X 2 X 2
G = enlx)ento)” = 2Ll

Forany n < 0, c,(x) = c_n(x)*, thus |ca(x)|? = |c_n(x)|?. With the general Parseval’s formula, we get:

1 To +oo 1+oo
7 | (Pt = n;w\cn(x = 1w +22_lab)F =lal +3 3 () + balx)) -



Example 0.2
We compute the Fourier series of the following triangle wave signal:

x(t)
a
‘ ‘ ‘ t
-To _ T L 0 T T To
2 4 4 2
_a -

T 4
Signal x is periodic with period Ty, it is even, and for any t € [0, 20} ,x(t)=a (1 — Tt). Since it is even, its Fourier
0

series can be written as:
“+oo
x(t) = ag(x) + Z ap(x) cos(nwot)
n=1

On one hand,

1 L 2 » 4 4 27 %
a a

= — t)dt = — 11— —t)dt=——|(1—- =t =0

20(x) To/_zox() To Jo ( To) 4[( ToHo

meaning that x is a zero-mean signal, this property being visible on its graphical representation. On the other hand, for

any n € N*,
To To
2 (2 4 K 4
an(x) = T /720 x(t) cos(nwot)dt = ?‘Z ; (1 - Tot) cos(nwot)dt
We have
? 7 (—1)" —1
cos(nwot)dt =0  and t cos(nwot)dt = ~————
0 0 n OJO
yielding
() 16a(1 — (=1)")  4a(1 —(=1)") 0 if nis even
X)) = = =
" w2 T2 w2n? %2 it nis odd
22
mn
We deduce
Bax~ 1 22 (X 1= (=1)" e
MO =5 2 e eon (@ o) = 55 3, e

Then we can display the Fourier series by drawing the Fourier coefficients:
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The blue curve represents the partial sum
N
8a
? m COoSs ((2” + 1)w0t)
n=0
of x(t) for N = 1.
Example 0.3
We compute the Fourier series of the following square wave signal:
y(t)
b
t
To i 0 To To
b
. . o . - [ To To
Signal y is periodic with period Ty, it is odd, for any t € |0, > , y(t) = b,and forany t € —7,0 , y(t) = —b.

Since it is odd, its Fourier series can be written as:

+oo
y(t) = Z b,(y) sin(nwot)
n=1



For any n € N*,

To To To
‘0 - 2 N n — (— n
bn(y)zi/z y(t)sin(nmt)dt:ﬂ/z sin(nwot)dt — <2 | _ costnwot) | = 4b1 - (Z1)" 261 (=)
To To Jo To

- nwo 0 To nwo T n
yielding
26X 1—(-1)" . 4b X _
y(t) == — sin(nwot) = — Z T 1 sin((2n + 1)wot)
n=1 n=0
. . . . . To 43
Consider again the triangle wave signal x from the previous example. Then for any t € |0, > , y(t) = ——, and for
To 4a . 4a ’ ; i
any t € > o, y(t) = X Setting b = —T . we have y(t) = x’(t). Thus we can also deduce the Fourier series
0 0
of y from x and use Fourier series differentiation property.
y(t)
’\ AN AN /\ b /\ NA_A_A_N_N /\
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The blue curve represents the partial sum

4b X

s n:02n—|—1

sin((2n + 1)wot)
of y(t) for N = 6. We notice overshoots near the discontinuities of y. This phenomenon is called Gibb’s phenomenon.

Proposition 0.8
Consider an LTI system L with impulse response h = L(d). If we input a periodic signal x with period Ty and Fourier

coefficients (c,(x))nez, then the corresponding output y = L(x) is also periodic with period Ty and its Fourier coefficients
satisfy the following identity:

+o0 )
V€L aly) = Hinn)e(x)  where H(meo)= [ h(t}e ™ ds

—0o0

PROOF : We have proved in the lecture about periodic signals that if the input of an LTI system is periodic, the correspond-
ing output is also periodic with the same period. We have seen in the previous lecture that complex exponentials are
eigenfunctions of any LTI system. Combining this property with the linearity of L, we can write:

Y= 3 aens =L = 3 cl)llena) = D cn(x)H(nwo)ens,



Since (enw, )nez is a Hilbert basis of L. (R, C), the coordinates of any signal of L7, (R, C) in this basis are unique, which
implies that for any n € Z, c,(y) = ca(x)H(nwy). n

Remarks:

» This property implies what we sometimes call the cos in / cos out rule: if the cosine ¢, 4., of fundamental impulse
.0, With
the same fundamental impulse wg, and whose the amplitude and phase are given by the identities A, = A,|H(wo)|
and ¢, = ¢, + Arg (H(wo)).

wo, amplitude A, and phase ¢y is the input of an LTI system, then the corresponding output is the cosine ¢, A

» We have seen the interest in LTI systems in the explicit definition of their output as the convolution of the input and
the impulse response. However, we have seen in the lecture about periodic signals that the direct computation of
convolution can be cumbersome. This proposition is very powerful because we can circumvent this convolution and
we can directly compute the output corresponding to a periodic input by the only knowledge of the Fourier coefficients
of this input and the coefficients H(nwg). In the next lecture, we extend this method to any signal in L?(R, C) by the
introduction of the Fourier transform.



